- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Ma, Gang (3)
-
Bauchy, Mathieu (2)
-
Liu, Han (2)
-
Tang, Longwen (2)
-
Zhou, Wei (2)
-
Abarca, Mariana (1)
-
Abram, Paul K. (1)
-
Basset, Yves (1)
-
Berg, Matty (1)
-
Boggs, Carol (1)
-
Brodeur, Jacques (1)
-
Cardoso, Pedro (1)
-
Chown, Steven L. (1)
-
De Snoo, Geert R. (1)
-
Deacon, Charl (1)
-
Dell, Jane E. (1)
-
Desneux, Nicolas (1)
-
Dillon, Michael E. (1)
-
Du, Tao (1)
-
Duffy, Grant A. (1)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Based on their structure, non-crystalline phases can fail in a brittle or ductile fashion. However, the nature of the link between structure and propensity for ductility in disordered materials has remained elusive. Here, based on molecular dynamics simulations of colloidal gels and silica glasses, we investigate how the degree of structural disorder affects the fracture of disordered materials. As expected, we observe that structural disorder results in an increase in ductility. By applying the activation-relaxation technique (an open-ended saddle point search algorithm), we demonstrate that the propensity for ductility is controlled by the topography of the energy landscape. Interestingly, we observe a power-law relationship between the particle non-affine displacement upon fracture and the average local energy barrier. This reveals that the dynamics of the particles upon fracture is encoded in the static energy landscape, i.e. , before any load is applied. This relationship is shown to apply to several classes of non-crystalline materials (oxide and metallic glasses, amorphous solid, and colloidal gels), which suggests that it may be a generic feature of disordered materials.more » « less
-
Tang, Longwen; Ma, Gang; Liu, Han; Zhou, Wei; Bauchy, Mathieu (, The Journal of Physical Chemistry B)null (Ed.)
-
Harvey, Jeffrey A.; Tougeron, Kévin; Gols, Rieta; Heinen, Robin; Abarca, Mariana; Abram, Paul K.; Basset, Yves; Berg, Matty; Boggs, Carol; Brodeur, Jacques; et al (, Ecological Monographs)
An official website of the United States government
